Gibb's Free Energy

- 1. Methanol is used as a rocket fuel for the following chemical reaction: $CH_3OH(I) + 3/2 O_2(g) \rightarrow H_2O(g) + CO_2(g)$
 - a) Predict the sign of ΔS for the above reaction and explain your answer with sound reasoning.

of gas particles increases $12 \rightarrow 2$ particles

State Change liquid + 900 -> 900 (ges 15 more disordered)

b) Predict the sign of ΔH for the above reaction (knowing that it is combustion) and explain your answer with sound reasoning.

- AH: combustion is exothermic : AH product L AH reckents

c) Is the sign of ΔG temperature dependent in this reaction? Explain your answer.

NO - since enthalpy and entropy both agree that the reaction should happen, this reaction will be sportnesses at all temps.

- 2. Predict the signs for ΔG , ΔH and ΔS for the following situations and explain your answer.
 - a) The vaporization of water above 100 °C.

+ DS - increase in disorder as liquid -> gos + DH - liquid has to absorb heat to become gos - AG - Vaporization is sporteness at T>100°C

b) Does ΔH or ΔS favour the vaporization process?

AS favours vaporingation -> increase in disorder

Gibb's Free Energy

3. For the reaction CO (g) + H_2O (g) \rightarrow CO₂ (g) + H_2 (g)

$$\Delta H = -41.2 \text{ kJ}$$
 and $\Delta S = -135 \text{ J/K}$

a) Calculate ΔG at room temperature, 298 K.

$$\Delta G = \Delta H - T \Delta S$$

 $\Delta G = -41.2 kJ - 298(-.135 kS)$
 $\Delta G = -0.97 kJ$

b) Calculate ΔG at 700K, assuming ΔH and ΔS are not affected by temperature.

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta G = -44.2 \, k J - 700 (-0.135)$$

$$\Delta G = 53.3 \, k J$$

c) Does raising the temperature favour this reaction, as written?

No - higher temp charges the recetion from sponteneous to non-sponteneous

d) Which factor, entropy or enthalpy, favours this reaction at high and low temperature?

4. Calculate the boiling point for the reaction: BCl_3 (I) \rightarrow BCl_3 (g)

	ΔH° (kJ/mol)	ΔS° (J/mol-K)
BCl3 (1) initial	-418	209
BCl3 (g) And	-395	290
	AH = 23K5	15=815/molk

$$\Delta G = \Delta H - T \Delta S$$

$$O = 23 - T(.081)$$

$$O = 23 - T(.081)$$

$$T = 283.95 \text{ k} = 10.95^{\circ}\text{C}$$