Thermochemical Equations- Practice Problems

1. Calcium oxide reacts with water to produce calcium hydroxide and 65.2 kJ of heat in the following reaction. Remember the self-heating coffee cup?
$\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \quad \Delta H=-65.2 \mathrm{~kJ}$
How much heat is released when 100.0 g of calcium oxide reacts with excess water?
2. The decomposition of baking soda is represented by the following thermochemical equation:
$2 \mathrm{NaHCO}_{3}(\mathrm{~s})+129 \mathrm{~kJ} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$
Is this reaction exothermic or endothermic?
What is the heat of reaction (ΔH) value for this reaction?
Calculate the amount of heat required to decompose 2.24 mol of baking soda.
3. Gasohol contains ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$, which when burned reacts with oxygen to produce water and carbon dioxide. How much heat is released when 12.5 g of ethanol burns?
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta H=-1235 \mathrm{~kJ}$
4. Distinguish between heat of reaction and heat of solution.
5. How much heat is released when 2.500 mol of $\mathrm{NaOH}(\mathrm{s})$ is dissolved in water?

The $\Delta H_{\text {solution }}$ for NaOH is $-445.1 \mathrm{~kJ} / \mathrm{mol}$
The thermochemical equation for this reaction is...
$\mathrm{NaOH}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+445.1 \mathrm{~kJ}$
6. What kind of information is given in a thermochemical equation?
7. Sodium acetate dissolves in water according to the following equation $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{~s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq}) \quad \Delta H=-17.3 \mathrm{~kJ}$

Would this process increase or decrease the temperature of the water? Explain.
8. The combustion of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ is an exothermic reaction

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta H=-1.39 \times 10^{3} \mathrm{~kJ}
$$

Calculate the amount of heat released when $4.79 \mathrm{~g} \mathrm{of}_{2} \mathrm{H}_{4}$ reacts with excess oxygen. The molar mass of ethane is $28.0 \mathrm{~g} / \mathrm{mol}$.

