THERMOCHEMISTRY CALCULATIONS WORKSHEET 1

Using reaction equation ratios

1. How much heat will be released when 6.44 g of Sulfur reacts with excess O_{2} according to the following equation? $2 \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3} \quad \Delta \mathrm{H}^{\circ}=-791.4 \mathrm{~kJ}$
2. How much heat will be released when 4.72 g of Carbon reacts with excess O_{2} according to the following equation? $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}^{\circ}=-393.5 \mathrm{~kJ}$
3. How much heat will be absorbed when 38.2 g of Bromine reacts with excess H_{2} according to the following equation? $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr} \quad \Delta \mathrm{H}^{\circ}=72.80 \mathrm{~kJ}$
4. How much heat will be released when 1.48 g of Chlorine reacts with excess phosphorus according to the following equation? $\quad 2 \mathrm{P}+5 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{PCl}_{5} \quad \Delta \mathrm{H}^{\circ}=-886 \mathrm{~kJ}$
5. How much heat will be released when 4.77 g of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ reacts with excess O_{2} according to the following equation? $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}^{\circ}=-1366.7 \mathrm{~kJ}$
6. How much heat will be absorbed when 13.7 g of Nitrogen reacts with excess O_{2} according to the following equation? $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO} \Delta \mathrm{H}^{\circ}=-180 \mathrm{~kJ}$
7. How much heat will be released when 11.8 g of Iron reacts with excess O_{2} according to the following equation? $3 \mathrm{Fe}+2 \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4} \quad \Delta \mathrm{H}^{\circ}=-1120.5 \mathrm{~kJ}$
8. How much heat will be released when 18.6 g of Hydrogen reacts with excess O_{2} according to the following equation? $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}^{\circ}=-571.6 \mathrm{~kJ}$
9. How much heat will be transferred when 14.9 g of ammonia reacts with excess O_{2} according to the following equation? $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}^{\circ}=-1170 \mathrm{~kJ}$
10. How much heat will be transferred when 5.81 g of graphite reacts with excess H_{2} according to the following equation? 6 C (graphite) $+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6} \quad \Delta \mathrm{H}^{\circ}=49.03 \mathrm{~kJ}$

Using $\Delta H=m C \Delta T$

11. How many kilojoules of heat energy are required to heat all the aluminum (C_{p} of $\mathrm{Al}=.902 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$) in a roll of aluminum foil (500.0 g) from room temperature $\left(25.0^{\circ} \mathrm{C}\right)$ to the temperature of a hot oven $\left(250.0^{\circ} \mathrm{C}\right)$?
12. One way to cool down your cup of coffee is to plunge an ice-cold piece of aluminum into it. Suppose you store a 20.0 g piece of aluminum (C_{p} of $\mathrm{Al}=.902 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$) in the refrigerator at $4.40^{\circ} \mathrm{C}$ and then drop it into your coffee. The coffee temperature drops from $90.0^{\circ} \mathrm{C}$ to $55.0^{\circ} \mathrm{C}$. How many joules of heat energy did the aluminum block absorb? (Ignore the cooling of the cup)
13. Suppose you pick up a 16.0-kilogram ball of iron (such as a "shot-put" ball at a track event). The iron ($\mathrm{Cp}=$ $.451 \mathrm{~J} / \mathrm{g} \bullet{ }^{\circ} \mathrm{C}$) ball has the same temperature as the atmosphere on a cool day say $16.0^{\circ} \mathrm{C}$. How many kilojoules of heat energy must the iron ball absorb to reach the temperature of your body $\left(37.0^{\circ} \mathrm{C}\right)$?
14. The specific heat of silver is $0.24 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. How much heat in joules must be added to a silver block of mass 86.0 g to raise its temperature by $9.00^{\circ} \mathrm{C}$?
15. An 18.7 g sample of platinum metal increases in temperature by $2.30^{\circ} \mathrm{C}$ when 5.70 J of heat are added. What is the specific heat of platinum?

Answers: 1)-79.4kJ 2)-155kJ 3) 17.4kJ 4) -3.75kJ 5)-142kJ 6) -88.1kJ 7)-78.7kJ 8)-2660kJ 9) -256kJ 10) 3.96kJ 11) 101 kJ 12) 912 J 13) 152 kJ 14) 186 J 15$) .132 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

